天天被操天天被操综合网,亚洲黄色一区二区三区性色,国产成人精品日本亚洲11,欧美zozo另类特级,www.黄片视频在线播放,啪啪网站永久免费看,特别一级a免费大片视频网站

現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學教案>高一數(shù)學上冊教案

高一數(shù)學上冊教案

時間:2025-06-12 18:11:06 銀鳳 數(shù)學教案 我要投稿

人教版高一數(shù)學上冊教案(精選6篇)

  作為一位杰出的教職工,時常需要編寫教案,編寫教案助于積累教學經(jīng)驗,不斷提高教學質(zhì)量。快來參考教案是怎么寫的吧!下面是小編整理的人教版高一數(shù)學上冊教案,僅供參考,大家一起來看看吧。

人教版高一數(shù)學上冊教案(精選6篇)

  高一數(shù)學上冊教案 1

  教學目標:

  (1)了解集合的表示方法;

  (2)能正確選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用;

  教學重點:

  掌握集合的表示方法;

  教學難點:

  選擇恰當?shù)谋硎痉椒?

  教學過程:

  一、復(fù)習回顧:

  1.集合和元素的定義;元素的三個特性;元素與集合的關(guān)系;常用的數(shù)集及表示。

  2.集合{1,2}、{(1,2)}、{(2,1)}、{2,1}的元素分別是什么?有何關(guān)系

  二、新課教學

  (一).集合的表示方法

  我們可以用自然語言和圖形語言來描述一個集合,但這將給我們帶來很多不便,除此之外還常用列舉法和描述法來表示集合。

  (1) 列舉法:把集合中的元素一一列舉出來,并用花括號“ ”括起來表示集合的方法叫列舉法。

  如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…

  說明:1.集合中的元素具有無序性,所以用列舉法表示集合時不必考

  慮元素的順序。

  2.各個元素之間要用逗號隔開;

  3.元素不能重復(fù);

  4.集合中的'元素可以數(shù),點,代數(shù)式等;

  5.對于含有較多元素的集合,用列舉法表示時,必須把元素間的規(guī)律顯示清楚后方能用省略號,象自然數(shù)集N用列舉法表示為

  例1.(課本例1)用列舉法表示下列集合:

  (1)小于10的所有自然數(shù)組成的集合;

  (2)方程x2=x的所有實數(shù)根組成的集合;

  (3)由1到20以內(nèi)的所有質(zhì)數(shù)組成的集合;

  (4)方程組 的解組成的集合。

  思考2:(課本P4的思考題)得出描述法的定義:

  (2)描述法:把集合中的元素的公共屬性描述出來,寫在花括號{ }內(nèi)。

  具體方法:在花括號內(nèi)先寫上表示這個集合元素的一般符號及取值(或變化)范圍,再畫一條豎線,在豎線后寫出這個集合中元素所具有的共同特征。

  一般格式:

  如:{x|x-3>2},{(x,y)|y=x2+1},{x|直角三角形},…

  說明:

  1.課本P5最后一段話;

  2.描述法表示集合應(yīng)注意集合的代表元素,如{(x,y)|y= x2+3x+2}與 {y|y= x2+3xx2}是不同的兩個集合,只要不引起誤解,集合的代表元素也可省略,例如:{xx整數(shù)},即代表整數(shù)集Z。

  辨析:這里的{ }已包含“所有”的意思,所以不必寫{全體整數(shù)}。下列寫法{實數(shù)集},{R}也是錯誤的。

  例2.(課本例2)試分別用列舉法和描述法表示下列集合:

  (1)方程x2—2=0的所有實數(shù)根組成的集合;

  (2)由大于10小于20的所有整數(shù)組成的集合;

  (3)方程組 的解。

  思考3:(課本P6思考)

  說明:列舉法與描述法各有優(yōu)點,應(yīng)該根據(jù)具體問題確定采用哪種表示法,要注意,一般集合中元素較多或有無限個元素時,不宜采用列舉法。

  (二).課堂練習:

  1.課本P6練習2;

  2.用適當?shù)姆椒ū硎炯希捍笥?的所有奇數(shù)

  3.集合A={x| ∈Z,x∈N},則它的元素是 。

  4.已知集合A={x|-3

  歸納小結(jié):

  本節(jié)課從實例入手,介紹了集合的常用表示方法,包括列舉法、描述法。

  作業(yè)布置:

  1. 習題1.1,第3.4題;

  2. 課后預(yù)習集合間的基本關(guān)系.

  高一數(shù)學上冊教案 2

  教學目標

  會運用圖象判斷單調(diào)性;理解函數(shù)的單調(diào)性,能判斷或證明一些簡單函數(shù)單調(diào)性;注意必須在定義域內(nèi)或其子集內(nèi)討論函數(shù)的單調(diào)性。

  重 點

  函數(shù)單調(diào)性的證明及判斷。

  難 點

  函數(shù)單調(diào)性證明及其應(yīng)用。

  一、復(fù)習引入

  1、函數(shù)的定義域、值域、圖象、表示方法

  2、函數(shù)單調(diào)性

  (1)單調(diào)增函數(shù)

  (2)單調(diào)減函數(shù)

  (3)單調(diào)區(qū)間

  二、例題分析

  例1、畫出下列函數(shù)圖象,并寫出單調(diào)區(qū)間:

  (1) (2) (2)

  例2、求證:函數(shù) 在區(qū)間 上是單調(diào)增函數(shù)。

  例3、討論函數(shù) 的單調(diào)性,并證明你的結(jié)論。

  變(1)討論函數(shù) 的單調(diào)性,并證明你的結(jié)論

  變(2)討論函數(shù) 的單調(diào)性,并證明你的結(jié)論。

  例4、試判斷函數(shù) 在 上的單調(diào)性。

  三、隨堂練習

  1、判斷下列說法正確的是 。

  (1)若定義在 上的函數(shù) 滿足 ,則函數(shù) 是 上的單調(diào)增函數(shù);

  (2)若定義在 上的函數(shù) 滿足 ,則函數(shù) 在 上不是單調(diào)減函數(shù);

  (3)若定義在 上的函數(shù) 在區(qū)間 上是單調(diào)增函數(shù),在區(qū)間 上也是單調(diào)增函數(shù),則函數(shù) 是 上的單調(diào)增函數(shù);

  (4)若定義在 上的函數(shù) 在區(qū)間 上是單調(diào)增函數(shù),在區(qū)間 上也是單調(diào)增函數(shù),則函數(shù) 是 上的.單調(diào)增函數(shù)。

  2、若一次函數(shù) 在 上是單調(diào)減函數(shù),則點 在直角坐標平面的( )

  A.上半平面 B.下半平面 C.左半平面 D.右半平面

  3、函數(shù) 在 上是___ ___;函數(shù) 在 上是__ _____。

  3.下圖分別為函數(shù) 和 的圖象,求函數(shù) 和 的單調(diào)增區(qū)間。

  4、求證:函數(shù) 是定義域上的單調(diào)減函數(shù)。

  四、回顧小結(jié)

  1、函數(shù)單調(diào)性的判斷及證明。

  課后作業(yè)

  一、基礎(chǔ)題

  1、求下列函數(shù)的單調(diào)區(qū)間

  (1) (2)

  2、畫函數(shù) 的圖象,并寫出單調(diào)區(qū)間。

  二、提高題

  3、求證:函數(shù) 在 上是單調(diào)增函數(shù)。

  4、若函數(shù) ,求函數(shù) 的單調(diào)區(qū)間。

  5、若函數(shù) 在 上是增函數(shù),在 上是減函數(shù),試比較 與 的大小。

  三、能力題

  6、已知函數(shù) ,試討論函數(shù)f(x)在區(qū)間 上的單調(diào)性。

  變(1)已知函數(shù) ,試討論函數(shù)f(x)在區(qū)間 上的單調(diào)性。

  高一數(shù)學上冊教案 3

  教學 目標

  1、使學生理解數(shù)列的概念,了解數(shù)列通項公式的意義,了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫出數(shù)列的前幾項、

 。1)理解數(shù)列是按一定順序排成的一列數(shù),其每一項是由其項數(shù)唯一確定的、

  (2)了解數(shù)列的各種表示方法,理解通項公式是數(shù)列第 項 與項數(shù) 的關(guān)系式,能根據(jù)通項公式寫出數(shù)列的前幾項,并能根據(jù)給出的一個數(shù)列的前幾項寫出該數(shù)列的一個通項公式、

 。3)已知一個數(shù)列的遞推公式及前若干項,便確定了數(shù)列,能用代入法寫出數(shù)列的前幾項、

  2、通過對一列數(shù)的觀察、歸納,寫出符合條件的一個通項公式,培養(yǎng)學生的觀察能力和抽象概括能力、

  3、通過由 求 的過程,培養(yǎng)學生嚴謹?shù)目茖W態(tài)度及良好的思維習慣、

  教學 建議

 。1)為激發(fā)學生學習數(shù)列的興趣,體會數(shù)列知識在實際生活中的作用,可由實際問題引入,從中抽象出數(shù)列要研究的問題,使學生對所要研究的內(nèi)容心中有數(shù),如書中所給的例子,還有物品堆放個數(shù)的計算等、

 。2)數(shù)列中蘊含的函數(shù)思想是研究數(shù)列的指導思想,應(yīng)及早引導學生發(fā)現(xiàn)數(shù)列與函數(shù)的關(guān)系、在 教學 中強調(diào)數(shù)列的項是按一定順序排列的,“次序”便是函數(shù)的自變量,相同的數(shù)組成的數(shù)列,次序不同則就是不同的數(shù)列、函數(shù)表示法有列表法、圖象法、解析式法,類似地,數(shù)列就有列舉法、圖示法、通項公式法、由于數(shù)列的自變量為正整數(shù),于是就有可能相鄰的兩項(或幾項)有關(guān)系,從而數(shù)列就有其特殊的表示法??遞推公式法、

 。3)由數(shù)列的通項公式寫出數(shù)列的前幾項是簡單的代入法, 教師 應(yīng)精心設(shè)計例題,使這一例題為寫通項公式作一些準備,尤其是對程度差的'學生,應(yīng)多舉幾個例子,讓學生觀察歸納通項公式與各項的結(jié)構(gòu)關(guān)系,盡量為寫通項公式提供幫助、

 。4)由數(shù)列的前幾項寫出數(shù)列的一個通項公式使學生學習中的一個難點,要幫助學生分析各項中的結(jié)構(gòu)特征(整式,分式,遞增,遞減,擺動等),由學生歸納一些規(guī)律性的結(jié)論,如正負相間用 來調(diào)整等、如果學生一時不能寫出通項公式,可讓學生依據(jù)前幾項的規(guī)律,猜想該數(shù)列的下一項或下幾項的值,以便尋求項與項數(shù)的關(guān)系、

 。5)對每個數(shù)列都有求和問題,所以在本節(jié)課應(yīng)補充數(shù)列前 項和的概念,用 表示 的問題是重點問題,可先提出一個具體問題讓學生分析 與 的關(guān)系,再由特殊到一般,研究其一般規(guī)律,并給出嚴格的推理證明(強調(diào) 的表達式是分段的);之后再到特殊問題的解決,舉例時要兼顧結(jié)果可合并及不可合并的情況、

 。6)給出一些簡單數(shù)列的通項公式,可以求其最大項或最小項,又是函數(shù)思想與方法的體現(xiàn),對程度好的學生應(yīng)提出這一問題,學生運用函數(shù)知識是可以解決的、

  教學 設(shè)計示例

  數(shù)列的概念

  教學 目標

  1、通過 教學 使學生理解數(shù)列的概念,了解數(shù)列的表示法,能夠根據(jù)通項公式寫出數(shù)列的項、

  2、通過數(shù)列定義的歸納概括,初步培養(yǎng)學生的觀察、抽象概括能力;滲透函數(shù)思想、

  3、通過有關(guān)數(shù)列實際應(yīng)用的介紹,激發(fā)學生學習研究數(shù)列的積極性、

  教學 重點,難點

  教學 重點是數(shù)列的定義的歸納與認識; 教學 難點是數(shù)列與函數(shù)的聯(lián)系與區(qū)別、

  教學 用具: 電腦,課件(媒體資料),投影儀,幻燈片

  教學 方法: 講授法為主

  教學 過程

  一、揭示課題

  今天開始我們研究一個新課題、

  先舉一個生活中的例子:場地上堆放了一些圓鋼,最底下的一層有100根,在其上一層(稱作第二層)碼放了99根,第三層碼放了98根,依此類推,問:最多可放多少層?第57層有多少根?從第1層到第57層一共有多少根?我們不能滿足于一層層的去數(shù),而是要但求如何去研究,找出一般規(guī)律、實際上我們要研究的是這樣的一列數(shù)

  ( 板書 ) 象這樣排好隊的數(shù)就是我們的研究對象??數(shù)列、

 。 板書 )第三章 數(shù)列

 。ㄒ唬⿺(shù)列的概念

  二、講解新課

  要研究數(shù)列先要知道何為數(shù)列,即先要給數(shù)列下定義,為幫助同學概括出數(shù)列的定義,再給出幾列數(shù):

  (幻燈片)

 、

  自然數(shù)排成一列數(shù):

 、

  3個1排成一列:

  ③

  無數(shù)個1排成一列:

 、

  的不足近似值,分別近似到 排列起來:

 、

  正整數(shù) 的倒數(shù)排成一列數(shù):

 、

  函數(shù) 當 依次取 時得到一列數(shù):

 、

  函數(shù) 當 依次取 時得到一列數(shù):

 、

  請學生觀察8列數(shù),說明每列數(shù)就是一個數(shù)列,數(shù)列中的每個數(shù)都有自己的特定的位置,這樣數(shù)列就是按一定順序排成的一列數(shù)、

 。 板書 )1、數(shù)列的定義:按一定次序排成的一列數(shù)叫做數(shù)列、

  為表述方便給出幾個名稱:項,項數(shù),首項(以幻燈片的形式給出)、以上述八個數(shù)列為例,讓學生練習了指出某一個數(shù)列的首項是多少,第二項是多少,指出某一個數(shù)列的一些項的項數(shù)、

  由此可以看出,給定一個數(shù)列,應(yīng)能夠指明第一項是多少,第二項是多少,……,每一項都是確定的,即指明項數(shù),對應(yīng)的項就確定、所以數(shù)列中的每一項與其項數(shù)有著對應(yīng)關(guān)系,這與我們學過的函數(shù)有密切關(guān)系、

 。 板書 )2、數(shù)列與函數(shù)的關(guān)系

  數(shù)列可以看作特殊的函數(shù),項數(shù)是其自變量,項是項數(shù)所對應(yīng)的函數(shù)值,數(shù)列的定義域是正整數(shù)集 ,或是正整數(shù)集 的有限子集 、

  于是我們研究數(shù)列就可借用函數(shù)的研究方法,用函數(shù)的觀點看待數(shù)列、

  遇到數(shù)學概念不單要下定義,還要給其數(shù)學表示,以便研究與交流,下面探討數(shù)列的表示法、

  ( 板書 )3、數(shù)列的表示法

  數(shù)列可看作特殊的函數(shù),其表示也應(yīng)與函數(shù)的表示法有聯(lián)系,首先請學生回憶函數(shù)的表示法:列表法,圖象法,解析式法、相對于列表法表示一個函數(shù),數(shù)列有這樣的表示法:用 表示第一項,用 表示第一項,……,用 表示第 項,依次寫出成為

  ( 板書 )(1)列舉法

 。ㄈ缁脽羝系睦樱┖営洖

  一個函數(shù)的直觀形式是其圖象,我們也可用圖形表示一個數(shù)列,把它稱作圖示法、

  ( 板書 )(2)圖示法

  啟發(fā)學生仿照函數(shù)圖象的畫法畫數(shù)列的圖形、具體方法是以項數(shù) 為橫坐標,相應(yīng)的項 為縱坐標,即以 為坐標在平面直角坐標系中做出點(以前面提到的數(shù)列 為例,做出一個數(shù)列的圖象),所得的數(shù)列的圖形是一群孤立的點,因為橫坐標為正整數(shù),所以這些點都在 軸的右側(cè),而點的個數(shù)取決于數(shù)列的項數(shù)、從圖象中可以直觀地看到數(shù)列的項隨項數(shù)由小到大變化而變化的趨勢、

  有些函數(shù)可以用解析式來表示,解析式反映了一個函數(shù)的函數(shù)值與自變量之間的數(shù)量關(guān)系,類似地有一些數(shù)列的項能用其項數(shù)的函數(shù)式表示出來,即 ,這個函數(shù)式叫做數(shù)列的通項公式、

  ( 板書 )(3)通項公式法

  如數(shù)列 的通項公式為 ;

  的通項公式為 ;

  的通項公式為 ;

  數(shù)列的通項公式具有雙重身份,它表示了數(shù)列的第 項,又是這個數(shù)列中所有各項的一般表示、通項公式反映了一個數(shù)列項與項數(shù)的函數(shù)關(guān)系,給了數(shù)列的通項公式,這個數(shù)列便確定了,代入項數(shù)就可求出數(shù)列的每一項、

  例如,數(shù)列 的通項公式 ,則 、

  值得注意的是,正如一個函數(shù)未必能用解析式表示一樣,不是所有的數(shù)列都有通項公式,即便有通項公式,通項公式也未必唯一、

  除了以上三種表示法,某些數(shù)列相鄰的兩項(或幾項)有關(guān)系,這個關(guān)系用一個公式來表示,叫做遞推公式、

 。 板書 )(4)遞推公式法

  如前面所舉的鋼管的例子,第 層鋼管數(shù) 與第 層鋼管數(shù) 的關(guān)系是 ,再給定 ,便可依次求出各項、再如數(shù)列 中, ,這個數(shù)列就是 、

  像這樣,如果已知數(shù)列的第1項(或前幾項),且任一項與它的前一項(或前幾項)間的關(guān)系用一個公式來表示,這個公式叫做這個數(shù)列的遞推公式、遞推公式是數(shù)列所特有的表示法,它包含兩個部分,一是遞推關(guān)系,一是初始條件,二者缺一不可、

  可由學生舉例,以檢驗學生是否理解、

  三、小結(jié)

  1、數(shù)列的概念

  2、數(shù)列的四種表示

  四、作業(yè)? 略

  五、 板書 設(shè)計

  數(shù)列

 。ㄒ唬⿺(shù)列的概念 涉及的數(shù)列及表示

  1、數(shù)列的定義

  2、數(shù)列與函數(shù)的關(guān)系

  3、數(shù)列的表示法

  (1)列舉法

 。2)圖示法

 。3)通項公式法

  (4)遞推公式法

  探究活動

  將邊長為 厘米的正方形分成 個邊長為1厘米的正方形,數(shù)出其中所有正方形的個數(shù)、

  解:當 時,共有正方形 個;當 時,共有正方形 個;當 時,共有正方形 個;當 時,共有正方形 個;當 時,共有正方形 個;歸納猜想邊長為 厘米的正方形中的正方形共有 個、

  高一數(shù)學上冊教案 4

  一、目的要求

  結(jié)合集合的圖形表示,理解交集與并集的概念。

  二、內(nèi)容分析

  1.這小節(jié)繼續(xù)研究集合的運算,即集合的交、并及其性質(zhì)。

  2.本節(jié)課的重點是交集與并集的概念,難點是弄清交集與并集的概念,符號之間的區(qū)別與聯(lián)系。

  三、教學過程

  復(fù)習提問:

  1.說出A的意義。

  2.填空:如果全集U={x|0≤x<6,X∈Z},A={1,3,5},B={1,4},那么,

  a=,B=。

  (A={0,2,4},B={0,2,3,5})

  新課講解:

  1.觀察下面兩個圖的陰影部分,它們同集合A、集合B有什么關(guān)系?

  2.定義:

  (1)交集:A∩B={x∈A,且x∈B}。

  (2)并集:A∪B={x∈A,且x∈B}。

  3.講解教科書1.3節(jié)例1-例5。

  組織討論:

  觀察下面表示兩個集合A與B之間關(guān)系的.5個圖,根據(jù)這些圖分別討論A∩B與A∪B。

  (2)中A∩B=φ。

  (3)中A∩B=B,A∪B=A。

  (4)中A∩B=A,A∪B=B。

  (5)中A∩B=A∪B=A=B。

  課堂練習:

  教科書1.3節(jié)第一個練習第1~5題。

  拓廣引申:

  在教科書的例3中,由A={3,5,6,8},B={4,5,7,8},得

  a∪B={3,5,6,8}∪{4,5,7,8}

  ={3,4,5,6,7,8}

  我們研究一下上面三個集合中的元素的個數(shù)問題。我們把有限集合A的元素個數(shù)記作card(A)=4,card(B)=4,card(A∪B)=6.

  顯然,

  Card(A∪B)≠card(A)+card(B)

  這是因為集合中的元素是沒有重復(fù)現(xiàn)象的,在兩個集合的公共元素只能出現(xiàn)一次。那么,怎樣求card(A∪B)呢?不難看出,要扣除兩個集合的公共元素的個數(shù),即card(A∩B)。在上例中,card(A∩B)=2。

  一般地,對任意兩個有限集合A,B,有

  Card(A∪B)=card(A)+card(B)-card(A∩B)。

  四、布置作業(yè)

  1.教科書習題1.3第1~5題。

  2.選作:設(shè)集合A={x|-4≤x<2},B={-1

  求A∩B∩C,A∪B∩C。

  (A∩B∩C={-1

  高一數(shù)學上冊教案 5

  一、教材分析

  1、 教材的地位和作用:

  函數(shù)是數(shù)學中最主要的概念之一,而函數(shù)概念貫穿在中學數(shù)學的始終,概念是數(shù)學的基礎(chǔ),概念性強是函數(shù)理論的一個顯著特點,只有對概念作到深刻理解,才能正確靈活地加以應(yīng)用。本課中對函數(shù)概念理解的程度會直接影響其它知識的學習,所以函數(shù)的第一課時非常的重要。

  2、 教學目標及確立的依據(jù):

  教學目標:

  (1) 教學知識目標:了解對應(yīng)和映射概念、理解函數(shù)的近代定義、函數(shù)三要素,以及對函數(shù)抽象符號的理解。

  (2) 能力訓練目標:通過教學培養(yǎng)的抽象概括能力、邏輯思維能力。

  (3) 德育滲透目標:使懂得一切事物都是在不斷變化、相互聯(lián)系和相互制約的辯證唯物主義觀點。

  教學目標確立的依據(jù):

  函數(shù)是數(shù)學中最主要的概念之一,而函數(shù)概念貫穿整個中學數(shù)學,如:數(shù)、式、方程、函數(shù)、排列組合、數(shù)列極限等都是以函數(shù)為中心的代數(shù)。加強函數(shù)教學可幫助學好其他的內(nèi)容。而掌握好函數(shù)的概念是學好函數(shù)的基石。

  3、教學重點難點及確立的依據(jù):

  教學重點:映射的概念,函數(shù)的近代概念、函數(shù)的三要素及函數(shù)符號的理解。

  教學難點:映射的概念,函數(shù)近代概念,及函數(shù)符號的理解。

  重點難點確立的依據(jù):

  映射的概念和函數(shù)的近代定義抽象性都比較強,要求學生的理性認識的能力也比較高,對于剛剛升入高中不久的來說不易理解。而且由于函數(shù)在高考中可以以低、中、高擋題出現(xiàn),所以近年來有一種“函數(shù)熱”的趨勢,所以本節(jié)的重點難點必然落在映射的概念和函數(shù)的近代定義及函數(shù)符號的理解與運用上。

  二、教材的處理:

  將映射的定義及類比手法的運用作為本課突破難點的關(guān)鍵。 函數(shù)的定義,是以集合、映射的觀點給出,這與初中教材變量值與對應(yīng)觀點給出不一樣了,從而給本身就很抽象的函數(shù)概念的理解帶來更大的困難。為解決這難點,主要是從實際出發(fā)調(diào)動學生的學習熱情與參與意識,運用引導對比的手法,啟發(fā)引導學生進行有目的的反復(fù)比較幾個概念的異同,使真正對函數(shù)的概念有很準確的認識。

  三、教學方法和學法

  教學方法:講授為主,自主預(yù)習為輔。

  依據(jù)是:因為以新的觀點認識函數(shù)概念及函數(shù)符號與運用時,更重要的是必須給學生講清楚概念及注意事項,并通過師生的共同討論來幫助學生深刻理解,這樣才能使函數(shù)的概念及符號的運用在學生的思想和知識結(jié)構(gòu)中打上深刻的烙印,為能學好后面的知識打下堅實的基礎(chǔ)。

  學法:四、教學程序

  一、課程導入

  通過舉以下一個通俗的例子引出通過某個對應(yīng)法則可以將兩個非空集合聯(lián)系在一起。

  例1:把高一(12)班和高一(11)全體同學分別看成是兩個集合,問,通過“找好朋友”這個對應(yīng)法則是否能將這兩個集合的某些元素聯(lián)系在一起?

  二. 新課講授:

  (1) 接著再通過幻燈片給出六組學生熟悉的數(shù)集的對應(yīng)關(guān)系引導學生歸納它們的共同性質(zhì)(一對一,多對一),進而給出映射的概念,表示符號f:a→b,及原像和像的定義。強調(diào)指出非空集合a到非空集合b的映射包括三部分即非空集合a、b和a到b的對應(yīng)法則 f。進一步引導判斷一個從a到b的對應(yīng)是否為映射的關(guān)鍵是看a中的任意一個元素通過對應(yīng)法則f在b中是否有唯一確定的元素與之對應(yīng)。

  (2)鞏固練習課本52頁第八題。

  此練習能讓更深刻的認識到映射可以“一對多,多對一”但不能是“一對多”。

  例1. 給出學生初中學過的函數(shù)的傳統(tǒng)定義和幾個簡單的一次、二次函數(shù),通過畫圖表示這些函數(shù)的對應(yīng)關(guān)系,引導發(fā)現(xiàn)它們是特殊的映射進而給出函數(shù)的近代定義(設(shè)a、b是兩個非空集合,如果按照某種對應(yīng)法則f,使得a中的任何一個元素在集合b中都有唯一的元素與之對應(yīng)則這樣的對應(yīng)叫做集合a到集合b的映射,它包括非空集合a和b以及從a到b的對應(yīng)法則f),并說明把函f:a→b記為y=f(x),其中自變量x的取值范圍a叫做函數(shù)的定義域,與x的值相對應(yīng)的y(或f(x))值叫做函數(shù)值,函數(shù)值的集合{ f(x):x∈a}叫做函數(shù)的值域。

  并把函數(shù)的近代定義與映射定義比較使認識到函數(shù)與映射的區(qū)別與聯(lián)系。(函數(shù)是非空數(shù)集到非空數(shù)集的`映射)。

  再以讓判斷的方式給出以下關(guān)于函數(shù)近代定義的注意事項:2. 函數(shù)是非空數(shù)集到非空數(shù)集的映射。

  3. f表示對應(yīng)關(guān)系,在不同的函數(shù)中f的具體含義不一樣。

  4. f(x)是一個符號,不表示f與x的乘積,而表示x經(jīng)過f作用后的結(jié)果。

  5. 集合a中的數(shù)的任意性,集合b中數(shù)的唯一性。

  66. “f:a→b”表示一個函數(shù)有三要素:法則f(是核心),定義域a(要優(yōu)先),值域c(上函數(shù)值的集合且c∈b)。

  三.講解例題

  例1.問y=1(x∈a)是不是函數(shù)?

  解:y=1可以化為y=0*x+1

  畫圖可以知道從x的取值范圍到y(tǒng)的取值范圍的對應(yīng)是“多對一”是從非空數(shù)集到非空數(shù)集的映射,所以它是函數(shù)。

  [注]:引導從集合,映射的觀點認識函數(shù)的定義。

  四.課時小結(jié):

  1. 映射的定義。

  2. 函數(shù)的近代定義。

  3. 函數(shù)的三要素及符號的正確理解和應(yīng)用。

  4. 函數(shù)近代定義的五大注意點。

  五.課后作業(yè)及板書設(shè)計

  書本p51 習題2.1的1、2寫在書上3、4、5上交。

  預(yù)習函數(shù)三要素的定義域,并能求簡單函數(shù)的定義域。

  函數(shù)(一)

  一、映射:

  2.函數(shù)近代定義: 例題練習

  二、函數(shù)的定義 [注]1—5

  1.函數(shù)傳統(tǒng)定義

  三、作業(yè):

  高一數(shù)學上冊教案 6

  一、教材

  《直線與圓的位置關(guān)系》是高中人教版必修2第四章第二節(jié)的內(nèi)容,直線和圓的位置關(guān)系是本章的重點內(nèi)容之一。從知識體系上看,它既是點與圓的位置關(guān)系的延續(xù)與提高,又是學習切線的判定定理、圓與圓的位置關(guān)系的基礎(chǔ)。從數(shù)學思想方法層面上看它運用運動變化的觀點揭示了知識的發(fā)生過程以及相關(guān)知識間的內(nèi)在聯(lián)系,滲透了數(shù)形結(jié)合、分類討論、類比、化歸等數(shù)學思想方法,有助于提高學生的思維品質(zhì)。

  二、學情

  學生初中已經(jīng)接觸過直線與圓相交、相切、相離的定義和判定;且在上節(jié)的學習過程中掌握了點的坐標、直線的方程、圓的方程以及點到直線的距離公式;掌握利用方程組的方法來求直線的交點;具有用坐標法研究點與圓的位置關(guān)系的基礎(chǔ);具有一定的數(shù)形結(jié)合解題思想的基礎(chǔ)。

  三、教學目標

  (一)知識與技能目標

  能夠準確用圖形表示出直線與圓的三種位置關(guān)系;可以利用聯(lián)立方程的方法和求點到直線的距離的方法簡單判斷出直線與圓的關(guān)系。

  (二)過程與方法目標

  經(jīng)歷操作、觀察、探索、總結(jié)直線與圓的位置關(guān)系的判斷方法,從而鍛煉觀察、比較、概括的`邏輯思維能力。

  (三)情感態(tài)度價值觀目標

  激發(fā)求知欲和學習興趣,鍛煉積極探索、發(fā)現(xiàn)新知識、總結(jié)規(guī)律的能力,解題時養(yǎng)成歸納總結(jié)的良好習慣。

  四、教學重難點

  (一)重點

  用解析法研究直線與圓的位置關(guān)系。

  (二)難點

  體會用解析法解決問題的數(shù)學思想。

  五、教學方法

  根據(jù)本節(jié)課教材內(nèi)容的特點,為了更直觀、形象地突出重點,突破難點,借助信息技術(shù)工具,以幾何畫板為平臺,通過圖形的動態(tài)演示,變抽象為直觀,為學生的數(shù)學探究與數(shù)學思維提供支持.在教學中采用小組合作學習的方式,這樣可以為不同認知基礎(chǔ)的學生提供學習機會,同時有利于發(fā)揮各層次學生的作用,教師始終堅持啟發(fā)式教學原則,設(shè)計一系列問題串,以引導學生的數(shù)學思維活動。

  六、教學過程

  (一)導入新課

  教師借助多媒體創(chuàng)設(shè)泰坦尼克號的情景,并從中抽象出數(shù)學模型:已知冰山的分布是一個半徑為r的圓形區(qū)域,圓心位于輪船正西的l處,問,輪船如何航行能夠避免撞到冰山呢?如何行駛便又會撞到冰山呢?

  教師引導學生回顧初中已經(jīng)學習的直線與圓的位置關(guān)系,將所想到的航行路線轉(zhuǎn)化成數(shù)學簡圖,即相交、相切、相離。

  設(shè)計意圖:在已有的知識基礎(chǔ)上,提出新的問題,有利于保持學生知識結(jié)構(gòu)的連續(xù)性,同時開闊視野,激發(fā)學生的學習興趣。

  (二)新課教學——探究新知

  教師提問如何判斷直線與圓的位置關(guān)系,學生先獨立思考幾分鐘,然后同桌兩人為一組交流,并整理出本組同學所想到的思路。在整個交流討論中,教師既要有對正確認識的贊賞,又要有對錯誤見解的分析及對該學生的鼓勵。

  判斷方法:

  (1)定義法:看直線與圓公共點個數(shù)

  即研究方程組解的個數(shù),具體做法是聯(lián)立兩個方程,消去x(或y)后所得一元二次方程,判斷△和0的大小關(guān)系。

  (2)比較法:圓心到直線的距離d與圓的半徑r做比較,

  (三)合作探究——深化新知

  教師進一步拋出疑問,對比兩種方法,由學生觀察實踐發(fā)現(xiàn),兩種方法本質(zhì)相同,但比較法只適合于直線與圓,而定義法適用范圍更廣。教師展示較為基礎(chǔ)的題目,學生解答,總結(jié)思路。

  已知直線3x+4y-5=0與圓x2+y2=1,判斷它們的位置關(guān)系?

  讓學生自主探索,討論交流,并闡述自己的解題思路。

  當已知了直線與圓的方程之后,圓心坐標和半徑r易得到,問題的關(guān)鍵是如何得到圓心到直線的距離d,他的本質(zhì)是點到直線的距離,便可以直接利用點到直線的距離公式求d。類比前面所學利用直線方程求兩直線交點的方法,聯(lián)立直線與圓的方程,組成方程組,通過方程組解得個數(shù)確定直線與圓的交點個數(shù),進一步確定他們的位置關(guān)系。最后明確解題步驟。

  (四)歸納總結(jié)——鞏固新知

  為了將結(jié)論由特殊推廣到一般引導學生思考:

  可由方程組的解的不同情況來判斷:

  當方程組有兩組實數(shù)解時,直線l與圓C相交;

  當方程組有一組實數(shù)解時,直線l與圓C相切;

  當方程組沒有實數(shù)解時,直線l與圓C相離。

  活動:我將抽取兩位同學在黑板上扮演,并在巡視過程中對部分學生加以指導。最后對黑板上的兩名學生的解題過程加以分析完善。通過對基礎(chǔ)題的練習,鞏固兩種判斷直線與圓的位置關(guān)系判斷方法,并使每一個學生獲得后續(xù)學習的信心。

  (五)小結(jié)作業(yè)

  在小結(jié)環(huán)節(jié),我會以口頭提問的方式:

  (1)這節(jié)課學習的主要內(nèi)容是什么?

  (2)在數(shù)學問題的解決過程中運用了哪些數(shù)學思想?

  設(shè)計意圖:啟發(fā)式的課堂小結(jié)方式能讓學生主動回顧本節(jié)課所學的知識點。也促使學生對知識網(wǎng)絡(luò)進行主動建構(gòu)。

  作業(yè):在學生回顧本堂學習內(nèi)容明確兩種解題思路后,教師讓學生對比兩種解法,那種更簡捷,明確本節(jié)課主要用比較d與r的關(guān)系來解決這類問題,對用方程組解的個數(shù)的判斷方法,要求學生課外做進一步的探究,下一節(jié)課匯報。

  七、板書設(shè)計

  我的板書本著簡介、直觀、清晰的原則,這就是我的板書設(shè)計。

【高一數(shù)學上冊教案】相關(guān)文章:

高一數(shù)學上冊教案02-12

高一上冊數(shù)學教案08-27

高一政治上冊教案08-05

高一上冊數(shù)學教案優(yōu)選【4篇】10-21

(推薦)高一上冊數(shù)學教案6篇10-31

高一的數(shù)學下教案02-07

人教版數(shù)學上冊教案05-08

高一數(shù)學教案11-08

高一數(shù)學集合教案08-28

關(guān)于高一數(shù)學的教案10-21